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ABSTRACT

We consider the problem of maximizing the time-to-first-
failure (TTFF), defined as the time till the first node in the
network runs out of battery energy, in energy constrained
broadcast wireless networks. We show that the TTFF cri-
terion, by itself, fails to provide the “ideally optimum” mul-
ticast tree and propose a composite weighted objective func-
tion which maximizes the TTFF and minimizes the sum of
transmitter powers. We then develop a mixed integer linear
programming (MILP) model for solving the joint optimiza-
tion problem optimally. We also consider the case of priori-
tized nodes and show how the model can be modified to deal
with such priorities.

I. INTRODUCTION

We consider the problem of maximizing the time-to-first-
failure in energy constrained broadcast wireless networks
where each node is powered by batteries. In applications
where replacement/maintenance of such batteries is difficult
or infeasible, it is of utmost importance to design routing pro-
tocols which maximize the lifetime of the network. A metric
commonly used to define the lifetime of a network is the du-
ration of time before any node in the network runs out of
its battery energy. We define this time to be the time-to-first-
failure (TTFF), also known as system lifetime or network life-
time in the literature. To the best of our knowledge, this prob-
lem was first addressed by Chang and Tassiulas for an unicast
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application [1]. Subsequent research in this area for unicast
as well as multicast applications have been reported in [2],
[3], [4] and [5]. In [7], it is shown that maximization of the
TTFF for a broadcast application can be solved optimally by
a greedy algorithm in polynomial time.

In this paper, we first illustrate that simply optimizing the
TTFF criterion may not provide the “best possible” solution.
This motivates the use of a composite objective function in-
volving the sum of the transmitter powers. We then present a
mixed integer linear programming (MILP) model for solving
the joint optimization problem optimally. The MILP model is
based on the well-studied single-origin multiple-destination
uncapacitated flow problem, tailored to reflect the inherently
broadcast nature of the wireless medium. Finally, we con-
sider the case of prioritized nodes and show how the model
can be modified to deal with such priorities.

II. NETWORK MODEL

We assume a fixed N -node network with a specified
source node which has to broadcast a message to all other
nodes in the network. Any node can be used as a relay node
to reach other nodes in the network. All nodes are assumed
to have omni-directional antennas, so that if node i transmits
to node j, all nodes closer to i than j will also receive the
transmission (provided line-of-sight exists).

We assume that, for a transmission from node i to j, the
received signal power at j varies as d−α

ij , where:

dij =
[

(xi − xj)
2 + (yi − yj)

2
]1/2
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is the Euclidean distance between nodes i and j, (xi, yi)
are the coordinates of node i and α (typically in the range
2 ≤ α ≤ 4) is the channel loss exponent. Consequently, the
transmitter power at i necessary to support the link i → j,
Pij , is proportional (accounting for fading and antenna gain
factors) to dα

ij . Without any loss of generality, we set the
proportionality constant to be equal to 1 and therefore:

Pij = dα
ij (1)

The power matrix of a network, P, is defined to be an N ×N
symmetric matrix whose (i, j)th element, Pij , represents the
power required to support the link i → j.

Finally, we assume that power expenditures due to signal
reception and processing are negligible compared to signal
transmission and hence the lifetime is determined solely by
the choice of transmitter powers and residual energy levels
of the nodes.

III. PROBLEM STATEMENT

Let E(t) be a vector of node residual energies at time t, the
ith element of E(t) representing the residual energy of node
i at time t, and Y be a vector of node transmission powers.
The element Yi represents the transmitter power level of node
i. We assume that each node has a constraint on maximum
transmitter power, denoted by Y max

i . That is:

Yi ≤ Y max
i : ∀i ∈ N (2)

where N is the set of all nodes in the network.
Also, let s be the source, D the set of destination nodes and

E the set of all directed edges1 and D the set of destination
nodes, D ⊆ {N \ s}. Let the cardinality of these sets be N ,
E and D respectively; i.e., N = |N |, E = |E| and D = |D|.
Using the transmitter power constraint, the set of all edges,
E , is given by:

E = {(i → j) : (i, j) ∈ N , i 6= j,Pij ≤ Y max
i , j 6= s} (3)

The third condition in the right hand side of (3) specifies
the set of nodes reachable by a direct transmission from any
transmitting node depending on its power constraint. The last
condition reflects that no transmitting node needs to reach the
source node.

Defining Li(t)
4

= Ei(t)/Yi to be the lifetime of node i,
the problem of maximizing the TTFF can be written as:

maximize {mini∈NLi(t)} (4)

1In this paper, we assume that all edges are directed. The notation (i →
j) will be used to denote a directed edge from node i to j. The notation
(i, j) will be used to refer to the node pair.

The objective function in (4) is to be optimized subject to the
following constraints:

1) All nodes, other than the source, must be reached, ei-
ther actually or implicitly2.

2) The source node must reach at least one other node.
3) The solution must be a connected tree; i.e., there must

be directed paths from the source to all destination
nodes, possibly involving other intermediate nodes.

The vector ~L(t)
4

= {Li(t) : ∀i ∈ N} is the node lifetime
vector at time t. Note that the value of the expression within
curly braces in (4) is dependent on the time index t and
hence, strictly speaking, should be termed residual−time−
to − first − failure. However, we will refer to it simply
as the time-to-first-failure, implicitly recognizing its depen-
dence on the time origin t. Accordingly, henceforth in this
paper, we will simply use the notations Ei and Li instead of
Ei(t) and Li(t).

Assuming that all nodes in the network have omni-
directional antennas, a transmission from node i to node j
would also be received by all nodes geometrically closer to i
than j. Let S be the set of nodes that are geometrically closer
to i than j (⇒ Pij > Pik : ∀k ∈ S). Nodes that belong in
S are said to receive the transmission from i implicitly (in
the sense that no additional cost is incurred to reach them)
and the set of transmissions {i → k : ∀k ∈ S} are referred
to as implicit transmissions. The transmission i → j is
referred to as an actual transmission.

Let {Xij : (i → j) ∈ E} be a set of binary variables
such that Xij = 1 if the transmission i → j is used in the
optimum tree and 0 otherwise. Following our discussion in
the previous paragraph, we can write:

Yi = maxj{XijPij : j 6= i} (5)

where Xij = 1 if node j is reached from node i (actually or
implicitly) and 0 otherwise. Note that equation (5) is a direct
consequence of our assumption of omni-directional antennas
and implies that the cost of spanning in multiple nodes from
node i is simply the cost incurred in reaching the farthest
node.

We now express the objective function in (4) as a minimax

2Note that the possibility of reaching a node implicitly is a consequence
of the inherently broadcast nature of the wireless network and our assump-
tion of omni-directional antennas.
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optimization problem as follows:

maximize (mini Li)

= maximize (mini Ei/Yi)

= minimize (maxi Yi/Ei) (6)

= minimize (maxi [maxj (PijXij) /Ei]) (7)

= minimize (maxi,j [PijXij/Ei]) (8)

= minimize σ (9)

where
σ = maxi,j (PijXij/Ei) = 1/τ (10)

and τ is the TTFF.
We conclude this section with definitions of critical node

and critical transmission. For a given connection tree, T , we
define its critical node to be the node whose residual lifetime
is equal to the TTFF of the tree. That is:

Critical node = argmini (Ei/Yi) (11)

Note that for any non-transmitting node, Yi = 0, and hence
the residual lifetime of that node is ∞.

A transmission (i → j) is defined to be the critical trans-
mission in a tree if:

Ei/Pij = TTFF
4

= mini (Ei/Yi) (12)

In the next section, we illustrate with an example the inad-
equacy of the TTFF criterion when optimized singly. This
will motivate the need for a joint objective function involv-
ing the sum of transmitter powers. In Section V, we develop
a mixed integer linear programming model for the joint opti-
mization problem.

IV. INADEQUACY OF THE TTFF CRITERION

Consider the 6-node network and the broadcast tree in Fig-
ure 1a. Assuming α = 2, the power matrix of the network
is:

P =















0 14.86 9.31 6.33 7.01 1.76
14.86 0 23.18 4.39 4.58 6.46
9.31 23.18 0 7.41 24.32 11.65
6.33 4.39 7.41 0 7.11 2.73
7.01 4.58 24.32 7.11 0 2.43
1.76 6.46 11.65 2.73 2.43 0















(13)

Assume that the residual energy of all nodes is 10. The resid-
ual lifetime vector of the nodes for the tree in Figure 1a is:
~L1 = [∞, 1.55,∞, 1.35,∞, 5.69]. The lifetimes of nodes 1,
3 and 5 are ∞ since they are non-transmitting nodes in the
tree. Node 4 is the critical node in the tree and 4 → 3 is the
critical transmission.

Now consider the broadcast tree in Figure 1b.
The residual lifetime vector in this case is: ~L2 =
[∞, 2.28,∞, 1.35,∞,∞]. The TTFF of this tree is
identical to that of Figure 1a. However, note that the lifetime
of node 2 is higher (2.28, as compared to 1.55) than its
lifetime in Figure 1a. Also, the lifetime of node 6 is now ∞,
compared to 5.69 in Figure 1a, since it is a non-transmitting
node. Clearly, for the same TTFF, this broadcast tree is
better than that shown in Figure 1a.

In general, given two trees Tm and Tn with the same TTFF,
Tm is considered better (“leaner”) than Tn if:

• there is at least one node in Tm whose residual lifetime
is greater in Tm than in Tn, and,

• the residual lifetimes of all other nodes in Tm are at least
as high as in Tn.

One way of obtaining a “lean” optimum solution is to con-
sider a joint optimization function of the form:

minimize w1σ + w2

N
∑

i=1

Yi (14)

where
∑N

i=1
Yi is the sum of transmitter powers, σ is the

inverse of the TTFF (10) and {w1, w2} are suitably chosen
non-negative penalty factors.

It can be easily verified that the tree in Figure 1b is char-
acterized by a smaller total transmitter power, 11.80 units
(P24 + P43), compared to the tree in Figure 1a which uses a
total transmitter power of 15.63 units (P26 + P61 + P43).

The first parameter in (14), σ, may be viewed as the global
cost while the second parameter,

∑N
i=1

Yi, may be viewed as
the sum of local costs. Varying w1 and w2 in (14) therefore
represents a tradeoff between the global and local costs. Al-
though not a focus of this paper, we would like to point out
that trading off w1 versus w2 also affects the number of hops
in the optimal solution, a critical criterion by itself for cer-
tain military applications, since using a large number of hops
increases the probability of detection/interception by enemy
radar. In general, the optimal tree for w2 = 0 uses a far more
number of hops - consequently, incurring higher average path
delay - than the optimal tree for w1 = 0.

Note that for the special case of w2 = 0, an optimal poly-
nomial time algorithm exists, as discussed in [7]. It is inter-
esting to note that, if the residual energies of the nodes are
identical (say, E), the objective function reduces to a “mini-
mization of the maximum transmitter power” problem which
can also be solved optimally in polynomial time, being a spe-
cial case of an arbitrary residual energy vector.

For w2 > 0, however, it is unlikely that any optimal poly-
nomial time algorithm exists, since the problem of minimiz-
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ing the sum of transmitter powers (w1 = 0 in (14)) has been
shown to be NP-complete [8].

Note that for the special case of equal residual energies
and w1, w2 6= 0, the problem reduces to a joint minimiza-
tion of “maximum transmitter power and sum of transmitter
powers”.

In this paper, we are concerned primarily with the case
when w1 >> w2 6= 0. For a proper choice of these param-
eter values, it is possible to obtain the “best possible” tree
which maximizes the TTFF while ensuring that the solution
is the most power efficient among the set of all trees with op-
timal TTFF. The concept of using a secondary optimization
criterion, such as sum of transmitter powers, is not new and
was mentioned by Ramanathan and Rosales-Hain in the con-
text of topology control of wireless ad-hoc networks [6]. It
should be noted that using the most power efficient optimal
TTFF tree also helps to control the total interference power
in the system.

Fig. 1a. The residual energy of each of the nodes is 10. The power matrix
of the network is given in (13). TTFF of the broadcast tree {2 → 6, 6 →
1, 4 → 3} is 1.35, node 4 being the critical node. The node lifetime vector
corresponding to the tree is: [∞, 1.55,∞, 1.35,∞, 5.69]. The lifetimes
of nodes 1, 3 and 5 are ∞ since they are non-transmitting nodes in the
tree. Note that the transmissions 2 → 4 and 2 → 5 are implicit, since
nodes 4 and 5 are nearer to 2 than 6.

V. MILP MODEL

In this section, we develop a mixed integer linear program-
ming model of the joint optimization problem involving the
TTFF criterion and the sum of the transmitter powers (14).

Let {Fij : ∀(i → j) ∈ E} be a set of flow variables (Fij

represents the flow from node i to node j), with E defined as
in (3). The general multicast problem can be interpreted as
a single-origin multiple-destination uncapacitated flow prob-
lem, with the source (the supply node) having D units of
supply and the destination nodes (demand nodes) having
one unit of demand each. For other nodes, the net in-flow
must equal the net out-flow, since they serve only as relay
nodes. At a conceptual level, the flow model can be viewed

Fig. 1b. An alternate broadcast tree with the same TTFF, 1.35, as in
Figure 1a. In this tree, the transmissions 4 → 1, 4 → 5 and 4 → 6 are
implicit. The node lifetime vector is: [∞, 2.28,∞, 1.35,∞,∞]. Note
that the lifetime of node 2 is higher (2.28, as compared to 1.55) than its
lifetime in Figure 1a. Also, the lifetime of node 6 is now ∞, compared to
5.69 in Figure 1a, since it is a non-transmitting node. Clearly, for the same
TTFF, this broadcast tree is better than that shown in Figure 1a.

as a token allocation scheme where the source node gener-
ates as many tokens as there are destination nodes and dis-
tributes them along the “most efficient” tree such that each
destination node gets to keep one token each. For exam-
ple, for the broadcast tree in Figure 1b, the flow variables
are F24 = 5, F41 = F43 = F45 = F46 = 1, the rest of the
variables being 0.

The single-origin multiple-destination flow problem dis-
cussed above can be solved using the usual conservation of
flow constraints as shown below (see [9] for example):

N
∑

j=1

Fij = D; i = s, (i → j) ∈ E (15)

N
∑

j=1

Fji −
N

∑

j=1

Fij = 1; ∀i ∈ D, (i → j) ∈ E (16)

N
∑

j=1

Fji −
N

∑

j=1

Fij = 0; ∀i 6∈ {D ∪ s}, (i → j) ∈ E (17)

Having set up the flow equations, we now have to write down
constraints linking the flow variables to the power variables,
{Yi}. We do this in two stages. In the first stage, we cou-
ple the flow variables and the indicator variables {Xij} and
in the next stage, we link the {Xij} variables to the power
variables. Recall from Section III that Xij = 1 if the edge
i → j appears in the optimum solution (either as an actual
transmission or as an implicit transmission) and 0 otherwise.

The set of constraints which couple the flow variables and
the Xij variables are:

D · Xij − Fij ≥ 0; ∀(i → j) ∈ E (18)

where D is the number of destination nodes. Note that (18)
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ensures that “Xij = 1 if Fij > 0”. The coefficient of Xij in
(18) is due to the fact that the maximum flow out of any node
on a single link is equal to the number of destination nodes.
Equation (18), however, leaves open the possibility of Xij

being equal to 1 for Fij = 0. We show later that, for w2 > 0
(equation 14), doing so would unnecessarily increase the cost
of the optimum solution and therefore this possibility can be
discounted. For the broadcast tree in Figure 1b, the status of
the Xij variables are X24 = X41 = X43 = X45 = X46 = 1,
the rest being 0. It should also be noted that the smallest
integer value of Xij which satisfies (18) for any nonzero flow
out of node i (i.e.,

∑

j Xij ≥ 1) is 1. Consequently, we can
simply define the Xij’s to be integers, instead of explicitly
declaring them to be binary variables.

Next, we write down constraints linking the Xij variables
and the power variables. As discussed in Section III (see eqn.
5), for an omni-directional antenna system, the cost of span-
ning in multiple nodes from node i is simply the cost incurred
in reaching the farthest node. This condition is expressed as:

Yi − PijXij ≥ 0; ∀i ∈ N , ∀(i → j) ∈ E (19)

In order to relate the inverse TTFF parameter, σ, to the power
variables, we note that σ = maxi Yi/Ei (compare equations
6 and 9). As in (19), this condition can be written as:

σ − Yi/Ei ≥ 0; ∀i ∈ N (20)

It is now clear that for w2 > 0, if there is no flow out of
node i (i.e.,

∑

j Fij = 0), setting Xij = 1 would result in a
positive value for Yi and thereby unnecessarily increase the
cost of the optimal solution.

So far, we have implicitly assumed that the residual life-
times of all transmitting nodes are greater than the multicast
duration3. In other words, if L is the total number of bits
to be transmitted during the session and R is the data rate
in bps (assumed uniform throughout the network), we have
assumed that:

Ei/Yi ≥ L/R ⇐⇒ Yi/Ei ≤ R/L (21)

Constraints of the form (21) can be explicitly added to the
model to ensure that all nodes choose transmitter power lev-
els such that their residual lifetimes are greater than or equal
to the multicast session duration, L/R.

The final set of constraints express the integrality of the
Xij variables and non-negativity of the Fij and Yi variables.
We note that the number of integer variables is equal to E

3We assume static multicasting; i.e., the same tree is used for the entire
multicast duration.

while the number of continuous variables is equal to E + N .
The number of constraints is equal to 2E + 3N .

Xij ≥ 0, integer; ∀i ∈ N (22)

Fij ≥ 0; ∀(i → j) ∈ E (23)

Yi ≥ 0; ∀i ∈ N (24)

A. Dealing with prioritized nodes

The MILP model we discussed above assumes that all
nodes enjoy equal priority in the network. We now con-
sider the case where nodes may have unequal priorities, e.g.,
depending on their location in the grid4 or on their resid-
ual energies. Let bi be the priority associated with node i,
0 < bi ≤ 1. The effective lifetime5 of node i, Leff

i , is now
defined as:

Leff
i = Ei/biYi (25)

Consequently, we redefine the inverse TTFF parameter as
follows (instead of eqn. 10):

σ = maxi (biYi/Ei) = 1/τ (26)

The above equation can be expressed as the following set of
linear constraints:

σ − biYi/Ei ≥ 0; ∀i ∈ N (27)

Solving the optimization problem with (27) instead of (20)
yields a node prioritized optimum solution. We illustrate the
concept of node weighting with an example.

Consider the 3-node network in Figure 2. Assume PAB =
2, PBC = 1.5, PAC = 5, EA = 10 and EB = 5.
Let bA = bB = 1. Under these conditions, the optimal
TTFF broadcast tree, considering node A to be the source,
is {A → B, B → C}, with a TTFF of 10/3 (node B is the
critical node). If, however, bA = 0.5 and bB = 1 (i.e., it is
more important to preserve node B than A), it can be eas-
ily verified that the optimization process yields the broadcast
tree {A → C}, with node B reached implicitly. Note that the
effective lifetime of node A, as computed by the optimization
process, is EA/bAPAC = 10/(0.5 × 5) = 4 but its actual
lifetime is EA/PAC = 10/5 = 2. This example illustrates
how node B can be preserved, at the expense of node A, by
assigning suitable node weights.

Figure 3 summarizes the generalized MILP model, with
arbitrary node weights.

4For example, barycentric nodes may be assigned higher priorities to
prevent their premature burn-out.

5Note that the actual lifetime of node i is still given by Ei/Yi. The
notion of effective lifetime is used only to guide the optimization process
to choose a tree avoiding the nodes accorded the highest priorities, if one
exists, as illustrated subsequently.
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Fig. 2. An example 3-node network.

minimize w1σ + w2

N
∑

i=1

Yi

subject to:

σ − biYi/Ei ≥ 0; ∀i ∈ N

R/L − Yi/Ei ≥ 0; ∀i ∈ N

Y max
i − Yi ≥ 0; ∀i ∈ N

Yi − PijXij ≥ 0; ∀i ∈ N , ∀(i → j) ∈ E

D · Xij − Fij ≥ 0; ∀(i → j) ∈ E

N
∑

j=1

Fij − D = 0; i = source, (i → j) ∈ E

N
∑

j=1

Fji −
N

∑

j=1

Fij − 1 = 0; ∀i ∈ D, (i → j) ∈ E

N
∑

j=1

Fji −
N

∑

j=1

Fij = 0; ∀i 6∈ D, i 6= source, (i → j) ∈ E

Xij ≥ 0, integer; ∀(i → j) ∈ E

Fij ≥ 0; ∀(i → j) ∈ E

Yi ≥ 0; ∀i ∈ N

Fig. 3. Generalized MILP model for the joint minimization of inverse
TTFF and sum of transmitter powers with arbitrary node weights.

VI. CONCLUSION

In this paper, we have considered the problem of maximiz-
ing the time-to-first-failure in broadcast wireless networks.
We showed that simply maximizing the TTFF (or, minimiz-
ing the inverse TTFF) criterion may not yield the best possi-
ble solution. This motivated us to consider a joint optimiza-
tion problem involving the TTFF criterion and a secondary
criterion such as the sum of transmitter powers. Finally,
we presented a mixed integer linear programming model for
solving the joint optimization problem and showed how the
model can be modified to deal with prioritized nodes.

Currently, we are conducting extensive network simula-

tions to quantify the effect of trading off total transmit power
versus maximum transmit power on performance parameters
such as throughput and end-to-end delay. Preliminary results
confirm our intuition that multicast trees designed to mini-
mize the maximum transmit power generally suffer from re-
duced throughput and higher latencies as the network load
increases, compared to multicast trees which minimize the
total transmit power. These results would be presented in an
upcoming paper.
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